

Table of Contents

Overview/Introduction	3
Tibial Implantation	4
Femoral Implantation - Round	7
Femoral Implantation - Oblong	10
Implant Removal - Round	14
Femoral Implant Removal - Oblong	15
Tibial Implant Removal	16
Top Insertion Tray	17
Bottom Insertion Tray	18
Removal Tray	19
Implants	20

INTRODUCTION

The OvertureTi Knee Resurfacing System is composed of femoral and tibial implants that are intended to be used in the partial replacement of the articular surfaces of the knee.* These implants are designed with sizing options that allow the surgeon to replace only the diseased or damaged region of the joint while preserving healthy surrounding cartilage and meniscus. We refer to this technique of replacing only the affected areas and preserving healthy tissue as FocalplastyTM.

SYSTEM COMPATIBILITY

The tibial and femoral implant components are compatible across all sizes. Any sized tibial component can be used with any sized femoral component and vice versa.

PATIENT POSITION AND EXPOSURE

The patient should be positioned in the supine position. A lateral knee post is recommended to stabilize the knee in the flexed position. Alternatively, a dynamic lower extremity positioner may also be used. The hip and knee should be freely movable. A minimum of 120 degrees of knee flexion should be achievable with this proposed set-up.

MEDIAL JOINT EXPOSURE

A longitudinal skin incision is made along the medial border of the patellar tendon. A medial parapatellar arthrotomy is made. The quadriceps insertion should be preserved. Removal of the retro-patellar fat pad is recommended for visualization. The periosteum and soft tissues of the proximal medial tibia are elevated and dissected medially, taking care to preserve the superficial medial collateral ligament. Deep retractors are placed.

LATERAL JOINT EXPOSURE

A longitudinal skin incision is made along the lateral border of the patellar tendon. A lateral parapatellar arthrotomy is made. The quadriceps insertion should be preserved. The proximal portion of the arthrotomy may be extended into the iliotibial band. Removal of the retro-patellar fat pad is recommended for visualization. The periosteum and soft tissues of the proximal lateral tibia are elevated and dissected laterally, taking care to preserve the insertion of the IT Band at Gerdy's tubercle and lateral collateral ligament. Deep retractors are placed.

TIBIAL IMPLANTATION

DEFECT ACCESS AND SIZING

Once the initial exposure is complete, flex the knee into deep flexion with external rotation (medial side) or internal rotation (lateral side) of the tibia to expose the surface of the tibial plateau (Figure 1). To gain better visualization of the plateau surface, it is recommended that the anterior horn of the meniscus be detached. The meniscus is left adherent to the joint capsule during the dissection. This technique is meniscus sparing. The anterior horn insertion is re-attached at the conclusion of the case using suture anchors.

Use the base of Tibial Pin Guide/Sizer to assess the necessary implant sizing on the tibial surface (Figure 2). The instrument should be rotated such that the cutout in the base is rotated towards the femur. This will allow for greater clearance with the femur and ease instrument insertion. It is important that the base of Tibial Pin Guide/Sizer fully extend beyond the edges of defect to ensure adequate implant coverage and complete removal of the affected area.

NOTE:

When the base of the instrument is flush with the tibia, the handle will be tilted to 10 degrees anteriorly from being perpendicular to the articular surface.

With the Tibial Pin Guide/Sizer flush to the tibial surface, drill the Pin into the tibia using the guide. The laser mark line on the Pin should ultimately be flush with the top of the Tibial Pin Guide/Sizer (Figure 3A). Carefully remove the Tibial Pin Guide/Sizer (Figure 3B).

FIGURE 3A

FIGURE 3B

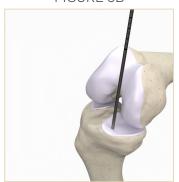


FIGURE 4

FIGURE 1

FIGURE 2

NOTE:

Proper sizing should result in full coverage of the defect; central placement of the implant is recommended.

Very little pressure is required to cut into cartilage. It is not necessary to cut into bone at this step.

CARTILAGE SCORING

Place the appropriately sized Cartilage Scoring Tool over the Pin (Figure 4). Manually rotate the tool one revolution to create a clean cut on the edge of articular cartilage down to the subchondral bone. The cut should fully encompass the pre-existing defect if possible. If this step does not capture all damaged area, a larger size implant may be needed.

REAMING

Place the Primary Tibial Reamer over the Pin using power (Figure 5A). Ensure the cutout section of the reamer is rotated towards the femur (Figure 5B). This will allow for additional clearance when inserting the instrument. Ream until the hard stop on the Primary Tibial Reamer contacts the tibial surface. Note that this contact may not occur along the entire periphery of the Primary Tibial Reamer. Carefully remove the Primary Tibial Reamer with the cutout facing the femoral condyle.

Hand ream over the Pin using the Secondary Tibial Reamer until the high side (with laser mark) of the reamer is recessed 0.5mm-1.0mm of adjacent cartilage surface (Figure 6A). Note that the shape of the top surface of the Secondary Tibial Reamer matches the surface/thickness of the final implant. Make a mark on the tibial plateau to correspond with the laser mark on the Secondary Tibial Reamer using a surgical marker to indicate the high side (thicker side of the implant) (Figure 6B). This will help to ensure the trial and final implant is properly rotated during insertion. Remove the Secondary Tibial Reamer and Pin. Irrigate to remove debris prior to proceeding to the next step.

FIGURE 5A

FIGURE 5B

TECHNIQUE TIP:

To avoid thermal necrosis of the bone, apply saline irrigation to the reamer during tibial reaming.

FIGURE 6A

FIGURE 6B

TECHNIQUE TIP:

The hand-reamer has the cutout or notched region at the base to avoid damage to the femur during insertion. This notched section does not have the ability to cut, so to ream the posterior tibial bone appropriately, the reamer must be rotated 360° while in contact with the tibia.

FIGURE 7

TRIALING

Attach the correctly sized Tibial Trial to the Universal Handle. Insert the Trial, rotating it to align the laser marked line on the trial with the mark made on the cartilage (Figures 7). Visually inspect to ensure the Trial is recessed below the adjacent cartilage. Check for depth particularly at the posterior edge of the trial, since the reamer cutout prevented assessment here previously. If the trial sits too low, apply additional cement under the implant to build it up to the proper height.

If the trial sits proud compared to the adjacent cartilage, remove the Tibial Trial using the Trial Inserter and hand ream the defect to the appropriate depth. Remove pin after trialing.

NOTE:

When the knee joint is under normal physiologic loading it is reasonable to expect the healthy articular cartilage to elastically deform 0.5mm under such loads. Ensure the implant is recessed 0.5 - 1.0mm to prevent premature cartilage wear on the articular surfaces of the adjacent femur. Since the Trial is the same thickness as the actual implant the Trial allows the user a visual confirmation the implant will be placed at the correct depth below the articular cartilage.

PEG PREPARATION AND CEMENTATION

Insert the distal end of the peg Drill into the hole created by the Guide, and drill under power until the shoulder on the drill bit contacts the bone (Figure 8A). Remove the drill bit. Irrigate the area to remove any loose debris and dry the area using a lap sponge.

Apply a pea-sized amount of bone cement into the central drill hole only (Figure 8B).

FIGURE 8A

FIGURE 9A

TIBIAL IMPLANTATION

Align the vertical mark on the Tibial Implant with the mark on the tibial plateau created during the hand reaming stage. Using the optional inserter or fingers, place the Tibial Implant into position (Figure 9A). Using the Tibial Impactor, fully seat the Tibial implant, ensuring that periphery of the Tibial Implant is 0.5mm-1.0mm recessed relative to the adjacent articular cartilage (Figures 9B, 9C).

FIGURE 9B

FIGURE 9C

FEMORAL IMPLANTATION - ROUND

DEFECT ACCESS AND SIZING

With the knee in flexion, the Femoral Round Pin Guide/Sizers are used to assess proper implant size. Select a Femoral Round Pin Guide/Sizer so the base fully extends beyond the defect to ensure full removal of the affected area and proper implant coverage. The chosen implant size should be surrounded by normal articular cartilage on all sides. Adjust the guide until the circular base is in full contact with the condyle on all sides (Figure 10). This will ensure that the guide is perpendicular to the femoral surface and will result in proper implant alignment. If it is not possible to achieve full contact with the condyle, consider selecting a different size or an oblong implant. Prioritize full contact in areas of greatest articulation.

With the Femoral Round Pin Guide/Sizer flush with the surface of the native cartilage, drive the Pin into the center guide hole on the Femoral Round Pin Guide/Sizer until the laser mark line is flush with the handle of the Femoral Round Pin Guide/Sizer (Figure 11). Remove the Femoral Pin Guide/Sizer.

FIGURE 10

NOTE:
Proper size should fully cover the defect while minimizing excess bone removed.

FIGURE 11

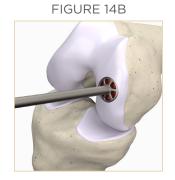
FIGURE 12A

FIGURE 12B

CARTILAGE SCORING

Place the appropriately sized Cartilage Scoring Tool over the Pin (Figure 12A). Manually rotate the tool one revolution to create a clean cut on the edge of articular cartilage down to the subchondral bone (Figure 12B). The cut should encompass any existing damage or defect. If it does not capture all damaged areas, a larger size implant may be needed.

NOTE:


Very little pressure is required to cut into cartilage. It is not necessary to cut into bone at this step.

PRIMARY AND SECONDARY REAMING

Snap the appropriate Hard Stop component into the Femoral Central Reamer to match the selected diameter (Figure 13A). Place the Femoral Central Reamer over the Pin (Figure 13B). Drive the Femoral Primary Reamer until proper depth is achieved via the Hard Stop at the base of the Reamer. Remove the Femoral Primary Reamer (Figure 13C). Irrigation should be used to prevent thermal necrosis during reaming.

Hand ream over the Pin using the Femoral Secondary Reamer until the top surface of the reamer is slightly recessed below the adjacent cartilage surface (Figure 14A). This will ensure that the implant is positioned at the proper level upon final implantation (Figure 14B).

FIGURE 14A

The final Implant should sit 0.5mm-1.0mm recessed relative to the adjacent cartilage surface (Figure 14C). Remove the Femoral Secondary Reamer.

The surface of the Femoral Secondary Reamer matches the shape/thickness of the final implant. This can be used as indicator of final implant position.

TRIALING

Insert the correctly sized Round Femoral Trial using the Universal Handle (Figure 15A). Visually inspect to ensure the top of the Trial is correctly recessed below the surface (0.5mm-1.0mm) (Figures 15B, 15C). If adequate placement has not been achieved, remove the Round Femoral Trial, and repeat the hand reaming step until the proper depth is achieved. If the trial sits too low, apply additional cement under the implant to build it up to the proper height. Remove pin after trialing.

FIGURE 15B

FIGURE 13A

FIGURE 13B

FIGURE 13C

NOTE:

When the knee joint is under normal physiologic loading it is reasonable to expect the healthy articular cartilage to elastically deform 0.5mm under such loads. Ensure the implant is recessed 0.5 - 1.0mm to prevent premature cartilage wear on the articular surfaces of the adjacent tibia. Since the Trial is the same thickness as the actual implant the Trial allows the user a visual confirmation the implant will be placed at the correct depth below the articular cartilage.

PEG PREPARATION AND CEMENTATION

Insert the distal end of the Drill into the hole created by the Pin, and drill until the shoulder on the drill bit reaches the bone (Figure 16A). Remove the Drill. Irrigate the area to remove any loose debris and dry using a lap sponge. Apply a pea-sized amount of bone cement into the central drill hole only (Figure 16B).

FIGURE 17A

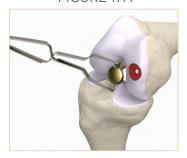
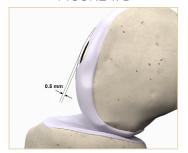


FIGURE 17B


IMPLANTATION

Using the optional inserter or fingers, align the peg of the Femoral Round Implant with the drilled hole (Figure 17A). Using the Femoral Impactor (Figure 17B), fully seat the Femoral Round Implant ensuring that periphery of the Femoral Round Implant is recessed relative to the adjacent cartilage (0.5-1.0mm below) (Figures 17C, 17D).

FIGURE 17C

FIGURE 17D

NOTE:

Take care to center the Femoral Impactor over the implant to ensure that the instrument does not contact the adjacent tissues to avoid unwanted trauma to the native articular surface.

NOTE:

There are four pockets evenly spaced around the implant. Align pockets in either the M/L or A/P plane.

FEMORAL IMPLANTATION - OBLONG

DEFECT ACCESS AND SIZING

With the knee in flexion, use the Femoral Oblong Pin Guide/Sizer to assess the proper implant size. Select a Femoral Oblong Pin Guide/Sizer so the base fully extends beyond the defect to ensure full removal of the affected area and proper implant coverage (Figure 18). In addition, ensure the base of the sizer is in full contact with the cartilage on all sides. This will ensure that the guide is perpendicular to the femoral surface and will result in proper implant placement. If the Guide/Sizer is not flush on all sides, re-adjust until it is in intimate contact. If it is not possible to achieve full contact with the condyle, consider readjusting or selecting a different size implant. Prioritize full contact in areas of greatest articulation.

With the Femoral Oblong Pin Guide/Sizer flush with the surface of the native cartilage, drive the Guide Pin into the superior hole on the Femoral Oblong Pin Guide/Sizer so the laser mark line is flush with the handle of the Femoral Oblong Pin Guide/Sizer (Figure 19). Mark two lines on the cartilage at the superior and inferior poles of the Guide/Sizer to record its orientation. Remove the Femoral Oblong Pin Guide/Sizer.

CARTILAGE SCORING

Place the appropriately sized Cartilage Scoring Tool over the superior Pin. Manually rotate the tool one revolution to create a clean cut on the edge of articular cartilage down to the subchondral bone. The cut should extend beyond any existing defect. If it does not capture all damaged area on the superior and lateral aspects, a larger size implant may be needed (Figure 20).

NOTE:

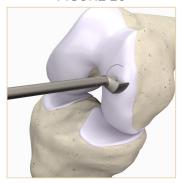
Very little pressure is required to cut into cartilage. It is not necessary to cut into bone at this step.

FIGURE 21B



FIGURE 21C

FIGURE 18



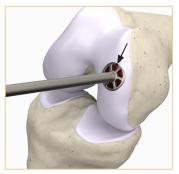
NOTE:
Proper size should fully cover the defect while minimizing excess bone removed.

FIGURE 19

FIGURE 20

PRIMARY AND SECONDARY REAMING

Snap the appropriate Hard Stop component into the Femoral Central Reamer to match the selected diameter (Figure 21A). Place the Femoral Central Reamer over the superior Pin using power (Figure 21B). Drive the Femoral Central Reamer until proper depth is achieved via the Hard Stop at the base of the reamer. Irrigation should be used to prevent thermal necrosis during reaming. Leave pin in place following reaming (Figure 21C).


Hand ream over superior Pin using the Femoral Secondary Reamer until the reamer is 0.5mm recessed below the adjacent cartilage level (Figure 21D). When checking for depth, the laser marked line on the reamer should align with the superior mark on the cartilage, as this orientation of the reamer matches the shape of the final implant (Figure 21E).

Place the Femoral Oblong Pin Guide/Sizer over the superior Pin. Orient the Sizer to align its superior-inferior axis with the lines previously marked on the cartilage. Insert the inferior Pin through the Guide until the first laser marked line is flush with the top of the handle to ensure Pin has achieved appropriate depth (Figures 22A, 22B). Remove the superior Pin and then remove the Guide.

FIGURE 21D

FIGURE 21E

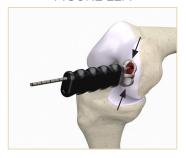


FIGURE 22B

The inferior defect is now ready for preparation. Repeat the steps for cartilage scoring, primary reaming under power, and secondary reaming over the inferior Pin (Figures 22C, 13D, 13E). Ensure the Hard Stop is installed in the Primary Reamer prior to attaching to power. When secondary reaming, orient the laser marked line with the inferior mark on the cartilage (Figure 22F). Perform additional hand reaming until Reamer is between 0.5mm-1.0mm recessed. The superior and inferior reamed surfaces should be at the same depth without a step. Remove inferior pin.

FIGURE 22C

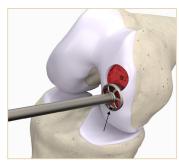

FIGURE 22D

FIGURE 22E

FIGURE 22F

CENTRAL SCORING AND REAMING

Select the correctly sized Femoral Reamer Guide and insert into the reamed implant defect using the Universal Handle (Figure 23A). Using a scalpel, score the remaining cartilage visible through the Femoral Reamer Guide (Figure 23B). Prior to reaming, remove the Hard Stop from the Femoral Central Reamer. Place the corresponding Central Femoral Reamer through the round port on the Femoral Reamer Guide (Figure 23C). Drive the Central Femoral Reamer until it reaches the built-in depth stop (Figure 23D).

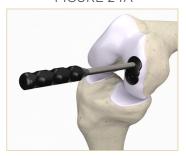


FIGURE 23C

FIGURE 24A

TRIALING

Attach the Oblong Femoral Trial to the Universal Handle and introduce it into the reamed cavity (Figure 24A). Visually inspect to ensure the top of the Trial is correctly recessed below the articular surface (0.5mm-1.0mm) (Figures 24B, 24C). If the trial sits too low, apply additional cement under the implant to build it up to the proper height. If adequate placement has not been achieved, remove the Oblong Femoral Trial and continue hand reaming.

FIGURE 24B

NOTF:

When the knee joint is under normal physiologic loading it is reasonable to expect the healthy articular cartilage to elastically deform 0.5mm under such loads. Ensure the implant is recessed 0.5 - 1.0mm to prevent premature cartilage wear on the articular surfaces of the adjacent tibia. Since the Trial is the same thickness as the actual implant the Trial allows the user a visual confirmation the implant will be placed at the correct depth below the articular cartilage.

FIGURE 24C

PEG PREPARATION AND CEMENTATION

Insert the distal end of the Drill into the hole created by the Pin, and drill under power until the shoulder on the drill bit contacts the bone (Figure 25A).

FIGURE 25B

Repeat for the second hole. Irrigate the area to remove any loose debris and dry using a lap sponge. Apply a pea-sized amount of bone cement into the drill holes only (Figure 25B).

IMPLANTATION

Using the optional inserter or fingers, align the pegs of the Femoral Oblong Implant with the drilled holes (Figure 26A). Using the Femoral Impactor, fully seat the implant, ensuring that periphery of the implant is recessed relative to the adjacent cartilage (0.5mm-1.0mm) (Figures 26B, 26C).

NOTE

Take care to center the Femoral Impactor over the implant to ensure that the instrument does not contact the adjacent tissues as it may cause unwanted trauma.

FIGURE 26A

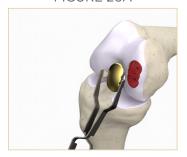


FIGURE 26B

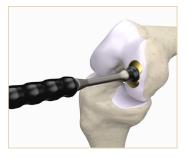


FIGURE 26C

FEMORAL IMPLANT REMOVAL - ROUND

The implant has a set of four removal pockets equally spaced around the implant, just below the articular surface. To gain access to the pockets, place the Hole Saw around the Femoral Round Implant under power and drill until the Hole Saw reaches its full depth to the surface of the Tibial Implant (Figures 27A, 27B). Remove the Hole Saw.

Place the Removal Tool around the Femoral Round Implant in the groove created by the Hole Saw. Line up the prongs of the Removal Tool with the removal pockets of the Femoral Round Implant (Figures 28A, 28B). Squeeze the grip of the removal tool to grab the implant. Attach the Slap Hammer as necessary to aid in removal (Figure 28C).

FIGURE 28A

FIGURE 28B

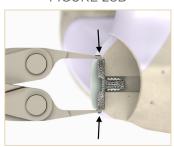


FIGURE 28C

NOTE: The removal pockets are likely oriented on the M/L or A/P axes.

FEMORAL IMPLANT REMOVAL - OBLONG

Similar to the Round implant, the Oblong implants have a set of removal pockets on opposite M/L sides of the midline of the implant just below the articular surface of the implant (Figure 29A). Chisel around the edges of the implant using the Straight Femoral Removal Punch and Curved Femoral Removal Punch (Figures 29B, 29C). This will aid in freeing it from any adjacent bone (Figure 29D).

FIGURE 29A

FIGURE 29B

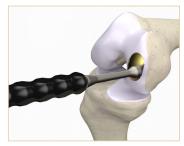


FIGURE 29C

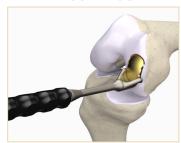


FIGURE 29D

Place the Removal Tool around the Femoral Implant in the lateral grooves created by the Punch. Line up the prongs of the Removal Tool with the removal pockets of the Femoral Implant (Figure 30A). If it is difficult to get both prongs connected, with the Slap Hammer attached, tap lightly downward on the Removal Tool until you feel the prongs gasp into the implant removal pockets. Squeeze the grip of the Removal Tool to grasp the implant (Figure 30B).

FIGURE 30A

FIGURE 30B

TIBIAL IMPLANT REMOVAL

The implant has a circumferential groove just below the articular surface which can be used for removal (Figure 31A).

To gain access to the removal groove, place the appropriately sized Hole Saw around the Tibial Implant and drill under power until the Hole Saw reaches its full depth to the surface of the Tibial Implant (Figure 31B). Remove the Hole Saw.

Alternatively, manual instruments may be utilized to create holes adjacent to the implant. The holes just need to be wide enough to accommodate insertion of the tips of the working end of the Removal Tool.

Place the Removal Tool around the Implant in the groove created by the Hole Saw. Line up the prongs of the Removal Tool with the removal groove of the Implant (Figures 32A, 32B). If it is difficult to get both prongs connected, with the Slap Hammer attached, tap lightly downward on the Removal Tool until you feel the prongs grasp into the implant removal groove. Squeeze the grip of the removal tool to grab the implant (Figure 32C).

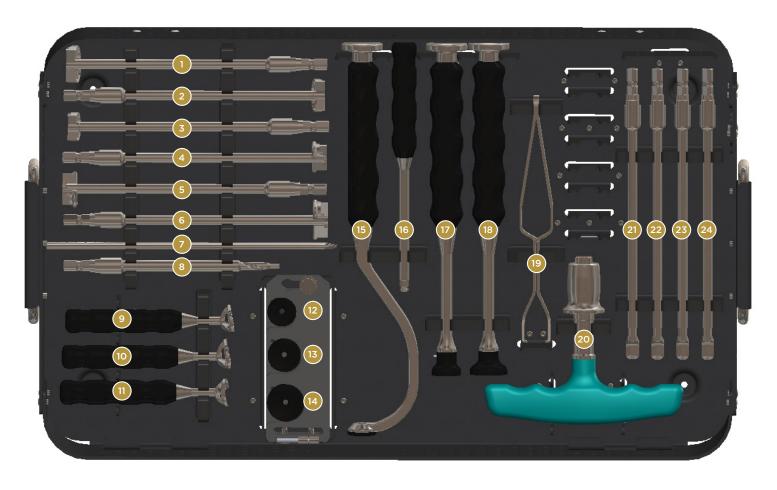
FIGURE 31A

FIGURE 32A

FIGURE 32B

FIGURE 32C

TOP INSERTION TRAY



1	90-OVR-780025	Femoral Central Reamer, 25.0mm	17	90-OVR-580017
2	90-OVR-780022	Femoral Central Reamer, 22.5mm	18	90-OVR-561730
3	90-OVR-780020	Femoral Central Reamer, 20.0mm	19	90-OVR-580022
4	90-OVR-780017	Femoral Central Reamer, 17.5mm	20	90-OVR-562035
5	90-OVR-501730	Femoral Secondary Reamer, Oblong 17.5X30mm	21	90-OVR-580025
6	90-OVR-500017	Femoral Secondary Reamer, Round 17.5mm	22	90-OVR-562240
7	90-OVR-502035	Femoral Secondary Reamer, Oblong 20.0X35mm	23	90-OVR-551730
8	90-OVR-500022	Femoral Secondary Reamer, Round 22.5mm	24	90-OVR-552035
9	90-OVR-502240	Femoral Secondary Reamer, Oblong 22.5X40mm	25	90-OVR-552240
10	90-OVR-500025	Femoral Secondary Reamer, Round 25.0mm	26	90-OVR-511730
11	90-OVR-540017	Femoral Round Pin Guide/Sizer 17.5mm	27	90-OVR-512035
12	90-OVR-540022	Femoral Round Pin Guide/Sizer 22.5mm	28	90-OVR-512240
13	90-OVR-540025	Femoral Round Pin Guide/Sizer 25.0mm	29	90-OVR-531730
14	90-OVR-510017	Femoral Primary Ream Hard Stop, Round 17.5mm	30	90-OVR-532035
15	90-OVR-510022	Femoral Primary Ream Hard Stop, Round 22.5mm	31	90-OVR-532240
16	90-OVR-510025	Femoral Primary Ream Hard Stop, Round 25.0mm		

90-OVR-561730	Femoral Trial, Oblong, 17.5x30mm
90-OVR-580022	Femoral Trial, Round, 22.5mm
90-OVR-562035	Femoral Trial, Oblong, 20.0x35mm
90-OVR-580025	Femoral Trial, Round, 25.0mm
90-OVR-562240	Femoral Trial, Oblong, 22.5x40mm
90-OVR-551730	Femoral Reamer Guide 17.5x30mm
90-OVR-552035	Femoral Reamer Guide 20.0x35mm
90-OVR-552240	Femoral Reamer Guide 22.5X40mm
90-OVR-511730	Femoral Primary Ream Hard Stop, Oblong 17.5x30mm
90-OVR-512035	Femoral Primary Ream Hard Stop, Oblong 20.0x35mm
90-OVR-512240	Femoral Primary Ream Hard Stop, Oblong 22.5x40mm
90-OVR-531730	Femoral Oblong Pin Guide/Sizer 17.5X30mm
90-OVR-532035	Femoral Oblong Pin Guide/Sizer 20.0X35mm
90-OVR-532240	Femoral Oblong Pin Guide/Sizer 22.5X40mm
	90-OVR-580022 90-OVR-562035 90-OVR-562035 90-OVR-562240 90-OVR-551730 90-OVR-552035 90-OVR-552240 90-OVR-511730 90-OVR-512035 90-OVR-512240 90-OVR-531730 90-OVR-532035

Femoral Trial, Round, 17.5mm

BOTTOM INSERTION TRAY

90-OVR-620022	Tibial Secondary Reamer
90-0 V K-020022	Tibial Secondary Realiter
	22.5mm

2 90-OVR-620020 Tibial Secondary Reamer

3 90-OVR-620017 Tibial Secondary Reamer 17.5mm

4 90-OVR-610017 Tibial Primary Reamer 17.5mm

5 90-OVR-610020 Tibial Primary Reamer 20.0mm

6 90-OVR-610022 Tibial Primary Reamer 22.5mm

7 90-OVR-710000 Pin

8 90-0VR-720000 Drill

9 90-OVR-650022 Tibial Pin Guide/Sizer 22.5mm

0 90-OVR-650020 Tibial Pin Guide/Sizer 20.0mm

11 90-OVR-650017 Tibial Pin Guide/Sizer 17.5mm

12 90-OVR-630017 Tibial Trial, 17.5mm

13 90-OVR-630020 Tibial Trial, 20.0mm

14 90-OVR-630022 Tibial Trial, 22.5mm

15 90-OVR-640017 Tibial Impactor

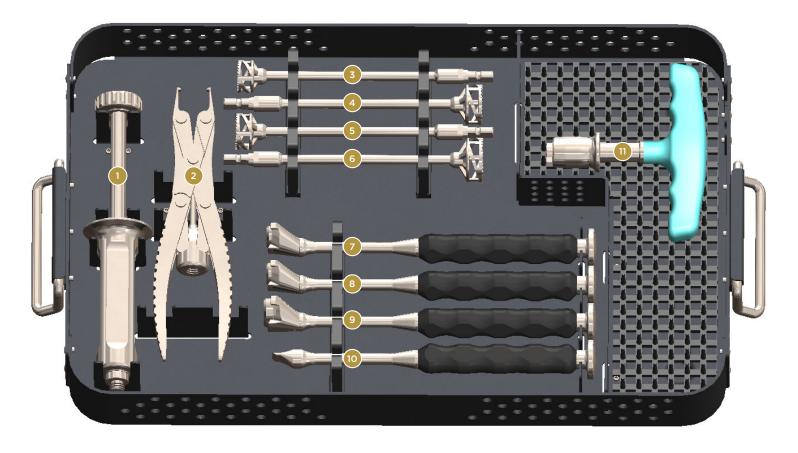
16 90-OVR-730000 Instrument Handle

90-OVR-570017 Femoral Impactor 17.5mm

18 90-OVR-570022 Femoral Impactor 22.5mm

19 90-OVR-740000 Inserter (optional)

20 90-OVR-750000 T-Handle


21 90-OVR-725025 Cartilage Scoring Tool 25.0mm

90-OVR-725022 Cartilage Scoring Tool 22.5mm

90-OVR-725020 Cartilage Scoring Tool 20.0mm

90-OVR-725017 Cartilage Scoring Tool 17.5mm

REMOVAL TRAY

1 90-OVR-760000 Slap Hammer

2 90-OVR-770000 Removal Tool

3 90-OVR-660017 Implant Removal Hole Saw

4 90-OVR-660020 Implant Removal Hole Saw 20.0mm

90-OVR-660022 Implant Removal Hole Saw 22.5mm

6 90-OVR-660025 Implant Removal Hole Saw 25.0mm 90-OVR-520017 Femoral Removal Punch, Curved 17.5mm

8 90-OVR-520020 Femoral Removal Punch, Curved 20.0mm

90-OVR-520022 Femoral Removal Punch, Curved 22.5mm

10 90-OVR-521000 Femoral Removal Punch, Straight

11) 90-OVR-750000 T-Handle

IMPLANTS

TIBIAL

90-OVR-300017 17.5 MM

90-OVR-300020 20.0 MM

90-OVR-300022 22.5 MM

FEMORAL - ROUND

90-OVR-200017 17.5 MM

90-OVR-200022 22.5 MM

90-OVR-200025 25.0 MM

FEMORAL - OBLONG

90-OVR-101730 17.5 X 30.0 MM

90-OVR-102035 20.0 X 35.0 MM

90-OVR-102240 22.5 X 40.0 MM

